
MACROS AND MACRO PROCESSORS

By: Bhargavi H. Goswami

Assistant Professor

MCA Faculty

Sunshine Group of Institutions

Email: bhargavigoswami@gmail.com

Mob: +91 8140099018

mailto:bhargavigoswami@gmail.com

INTRODUCTION

 Macros are used to provide a program generation

facility through macro expansion.

 Many languages provide build-in facilities for

writing macros like PL/I, C, Ada AND C++.

 Assembly languages also provide such facilities.

 When a language does not support build-in

facilities for writing macros what is to be done?

 A programmer may achieve an equivalent effect

by using generalized preprocessors or software

tools like Awk of Unix.

A MACRO

 Def: A macro is a unit of specification for

program generation through expansion.

 A macro consists of

 a name,

 a set of formal parameters and

 a body of code.

 The use of a macro name with a set of actual

parameters is replaced by some code generated

from its body.

 This is called macro expansion.

 Two kinds of expansion can be identified.

CLASSIFICATION OF MACROS:

 Lexical expansion:

 Lexical expansion implies replacement of a character

string by another character string during program

generation.

 Lexical expansion is to replace occurrences of formal

parameters by corresponding actual parameters.

 Semantic expansion:

 Semantic expansion implies generation of instructions

tailored to the requirements of a specific usage.

 Semantic expansion is characterized by the fact that

different uses of a macro can lead to codes which differ in

the number, sequence and opcodes of instructions.

 Eg: Generation of type specific instructions for

manipulation of byte and word operands.

EXAMPLE

 The following sequence of instructions is used to
increment the value in a memory word by a constant.

 1. Move the value from the memory word into a machine-
register.

 2. Increment the value in the machine register.

 3. Move the new value into the memory word.

 Since the instruction sequence MOVE-ADD-MOVE
may be used a number of times in a program, it is
convenient to define a macro named INCR.

 Using Lexical expansion the macro call INCR
A,B,AREG can lead to the generation of a MOVE-
ADD-MOVE instruction sequence to increment A by
the value of B using AREG to perform the arithmetic.

 Use of Semantic expansion can enable the instruction
sequence to be adapted to the types of A and B.

 For example an INC instruction could be generated if
A is a byte operand and B has the value „1‟.

HOW DOES MACRO DIFFER FROM

SUBROUTINE?

 Macros differ from subroutines in one
fundamental respect.

 Use of a macro name in the mnemonic field of
an assembly statement leads to its expansion,

 whereas use of subroutine name in a call
instruction leads to its execution.

 So there is difference in

 Size

 Execution Efficiency

 Macros can be said to trade program size for
execution efficiency.

 More difference would be discussed at the time of
discussion of macro expansion.

MACRO DEFINITION AND CALL

 MACRO DEFINITION

 A macro definition is enclosed between a macro header statement and
a macro end statement.

 Macro definitions are typically located at the start of a program.

 A macro definition consists of.
 A macro prototype statement

 One or more model statements

 Macro preprocessor statements

 The macro prototype statement declares the name of a macro
and the names and kinds of its parameters.

 It has the following syntax

<macro name> [< formal parameter spec > [,..]]

 Where <macro name> appears in the mnemonic field of an
assembly statement and

 < formal parameter spec> is of the form

 &<parameter name> [<parameter kind>]

 Open your book and see example 5.2 on pg 133.

MACRO CALL

 A macro is called by writing the macro name in

the mnemonic field.

 Macro call has the following syntax.

<macro name> [<actual parameter spec>[,..]]

 Where an actual parameter resembles an

operand specification in an assembly language

statement.

EXAMPLE

 MACRO and MEND are the macro header and macro
end statements.

 The prototype statement indicates that three
parameters called

 MEM_VAL,

 INCR_VAL and

 REG exists

for the macro.

 Since parameter kind is not specified for any of
the parameters, they are all of the default kind
„positional parameter‟.

 Statements with the operation codes MOVER, ADD
and MOVEM are model statements.

 No preprocessor statements are used in this macro.

MACRO

INCR &MEM_VAL, &INCR_VAL, ®

MOVER ®, &MEM_VAL

ADD ®, &INCR_VAL

MOVEM ®, &MEM_VAL

MEND

MACRO EXPANSION

 Macro call leads to macro expansion.

 During macro expansion, the macro call statement is
replaced by a sequence of assembly statements.

 How to differentiate between „the original
statements of a program‟ and „the statements
resulting from macro expansion‟ ?

 Ans: Each expanded statement is marked with a „+‟
preceding its label field.

 Two key notions concerning macro expansion are

 A. Expansion time control flow : This determines the order
in which model statements are visited during macro
expansion.

 B. Lexical substitution: Lexical substitution is used to
generate an assembly statement from a model
statement.

A. EXPANSION TIME CONTROL FLOW

 The default flow of control during macro expansion is
sequential.

 In the absence of preprocessor statements, the model
statements of a macro are visited sequentially
starting with the statement following the macro
prototype statement and ending with the statement
preceding the MEND statement.

 What can alter the flow of control during expansion?

 A preprocessor statement can alter the flow of
control during expansion such that
 Conditional Expansion: some model statements are either

never visited during expansion, or

 Expansion Time Loops: are repeatedly visited during
expansion.

 The flow of control during macro expansion is
implemented using a macro expansion counter (MEC)

ALGOTIRHM (MACRO EXPANSION)

 1. MEC:=statement number of first statement

following the prototype stmt.

 2. While statement pointed by MEC is not a

MEND statement.

 a. If a model statement then

 i. Expand the statement

 ii. MEC:=MEC+1;

 b. Else (i.e. a preprocessor statement)

 i. MEC:= new value specified in the statement.

 3. Exit from macro expansion.

B. LEXICAL SUBSTITUTION

 A model statement consists of 3 types of strings.
 An ordinary string, which stands for itself.

 The name of a formal parameter which is preceded by the
character „&‟.

 The name of a preprocessor variable, which is also preceded by
the character „&‟.

 During lexical expansion, strings of type 1 are retained
without substitution.

 String of types 2 and 3 are replaced by the „values‟ of the
formal parameters or preprocessor variables.

 Rules for determining the value of a formal parameter
depends on the kind of parameter:
 Positional Parameter

 Keyword Parameter

 Default specification of parameters

 Macros with mixed parameter lists

 Other uses of parameter

POSITIONAL PARAMETERS

 A positional formal parameter is written as
&<parameter name>,

 e.g. &SAMPLE

 where SAMPLE is the name of parameter.

 <parameter kind> of syntax rule is omitted.

 The value of a positional formal parameter XYZ
is determined by the rule of positional association
as follows:

 Find the ordinal position of XYZ in the list of
formal parameters in the macro prototype
statement.

 Find the actual parameter specification occupying the
same ordinal position in the list of actual parameters
in the macro call statement.

EXAMPLE

 Consider the call:

INCR A,B,AREG

 On macro INCR, following rule of positional
association, values of formal parameters are:

 Formal parameter value

 MEM_VAL A

 INCR_VAL B

 REG AREG

 Lexical expansion of the model statements now leads
to the code

 + MOVER AREG,A

 + ADD AREG,B

 + MOVEM AREG,A

KEYWORD PARAMETER

 For keyword parameter,

 <parameter name> is an ordinary string and

 <parameter kind> is the string „=‟

in syntax rule.

 The <actual parameter spec> is written as

<formal parameter name>=<ordinary string>.

 Note that the ordinal position of the

specification XYZ=ABC in the list of actual

parameters is immaterial.

 This is very useful in situations where long lists

of parameters have to be used.

 Let us see example for it.

EXAMPLE:

 Following are macro call statement:

INCR_M MEM_VAL=A, INCR_VAL=B, REG=AREG

INCR_M INCR_VAL=B, REG=AREG, MEM_VAL=A

 Both are equivalent.

 Following is macro definition using keyword
parameter:

 MACRO

 INCR_M &MEM_VAL=, &INCR_VAL=,®=

 MOVER ®, &MEM_VAL

 ADD ®, &INCR_VAL

 MOVEM ®,&MEM_VAL

 MEND

DEFAULT SPECIFICATIONS OF

PARAMETERS

 A default value is a standard assumption in
the absence of an explicit specification by the
programmer.

 Default specification of parameters is useful
in situations where a parameter has the same
value in most calls.

 When the desired value is different from the
default value, the desired value can be specified
explicitly in a macro call.

 The syntax for formal parameter specification, as
follows:

&<parameter name> [<parameter kind> [<default
value>]]

EXAMPLE

 The macro can be redefined to use a default specification
for the parameter REG

 INCR_D MEM_VAL=A, INCR_VAL=B

 INCR_D INCR_VAL=B, MEM_VAL=A

 INCR_D INCR_VAL=B, MEM_VAL=A, REG=BREG

 First two calls are equivalent but third call overrides the
default value for REG with the value BREG in next
example. Have a look.

 MACRO

 INCR_D &MEM_VAL=, &INCR_VAL=, ®=AREG

 MOVER ®, &MEM_VAL

 ADD ®, &INCR_VAL

 MOVEM ®, &MEM_VAL

 MEND

MACROS WITH MIXED PARAMETER LISTS

 A macro may be defined to use both positional

and keyword parameters.

 In such a case, all positional parameters must

precede all keyword parameters.

 example in the macro call

SUMUP A, B, G=20, H=X

 A, B are positional parameters while G, H are

keyword parameters.

 Correspondence between actual and formal

parameters is established by applying the rules

governing positional and keyword parameters

separately.

OTHER USES OF PARAMETERS

 The model statements have used formal parameters only in operand
field.

 However, use of parameters is not restricted to these fields.

 Formal parameters can also appear in the label and opcode fields of
model statements.

 Example:

 MCRO

 CALC &X, &Y, &OP=MULT, &LAB=

 &LAB MOVER AREG, &X

 &OP AREG, &Y

 MOVEM AREG, &X

 MEND

 Expansion of the call CALC A, B, LAB=LOOP leads to the following
code:

 + LOOP MOVER AREG, A

 + MULT AREG, B

 + MOVEM AREG, A

NESTED MACRO CALLS

 A model statement in a macro may constitute a

call on another macro.

 Such calls are known as nested macro calls.

 Macro containing the nested call is the outer

macro and,

 Macro called is inner macro.

 They follow LIFO rule.

 Thus, in structure of nested macro calls,

expansion of latest macro call (i.e inner macro) is

completed first.

EXAMPLE:

 + MOVEM BREG, TMP

 + MOVER BREG, X

 + ADD BREG, Y

 + MOVEM BREG, X

 + MOVER BREG, TMP

 MACRO

 COMPUTE &FIRST, &SECOND

 MOVEM BREG, TMP

 INCR_D &FIRST, &SECOND, REG=BREG

 MOVER BREG, TMP

 MEND

 COMPUTE X,Y:
 + MOVEM BREG, TMP [1]

 + INCR_D X,Y

 + MOVER BREG,X [2]

 + ADD BREG,Y [3]

 + MOVEM BREG,X [4]
 + MOVER BREG,TMP [5]

ADVANCED MACRO FACILITIES

 Advanced macro facilities are aimed to

supporting semantic expansion.

 Used for:

 performing conditional expansion of model

statements and

 in writing expansion time loops.

 These facilities can be grouped into following.

 1. Facilities for alteration of flow of control during

expansion.

 2. Expansion time variables.

 3. Attributes of parameters.

1. ALTERATION OF FLOW OF CONTROL

DURING EXPANSION

 Two features are provided to facilitate alteration of
flow of control during expansion.

 1. Expansion time sequencing symbol

 2. Expansion time statements

 AIF,

 AGO and

 ANOP.

 A sequencing symbol (SS) has the syntax

.<ordinary string>

 As SS is defined by putting it in the label field of
statement in the macro body.

 It is used as an operand in an AIF or AGO statement
to designate the destination of an expansion time
control transfer.

AIF STATEMENT

 An AIF statement has the syntax

AIF (<expression>) <sequencing symbol>

 Where <expression> is a relational expression

involving ordinary strings, formal parameters

and their attributes and expansion time

variables.

 If the relational expression evaluates to true,

expansion time control is transferred to the

statement containing <sequencing symbol> in its

label field.

AN AGO STATEMENT

 An AGO statement has the syntax

AGO <sequencing symbol>

 Unconditionally transfers expansion time control

to the statement containing <sequencing symbol>

in its label field.

AN ANOP STATEMENT

 An ANOP statement is written as

<sequencing symbol> ANOP

 And simply has the effect of defining the

sequencing symbol.

2. EXPANSION TIME VARIABLE

 Expansion time variables (EV‟s) are variables
which can only be used during the expansion of
macro calls.

 A local EV is created for use only during a
particular macro call.

 A global EV exists across all macro calls situated
in a program and can be used in any macro which
has a declaration for it.

 Local and global EV‟s are created through
declaration statements with the following syntax:

LCL <EV specification> [, <EV specification>]

GBL <EV specification> [, <EV specification>]

 <EV specification> has the syntax

&<EV name>

where <EV name> is an ordinary string.

 Values of EV‟s can be manipulated through the
preprocessor statement SET.

 A SET statement is written as

<EV specification> SET <SET-expression>

 Where <EV specification> appears in the label field
and

 SET in the mnemonic field.

 A SET statement assigns the value of <SET-
expression> to the EV specified in <EV
specification>.

 The value of an EV can be used in any field
of a model statement, and in the expression
of an AIF statement.

EXAMPLE

MACRO

CONSTANTS

LCL &A

&A SET 1

DB &A

&A SET &A+1

DB &A

MEND

 A call on macro CONSTANTS is expanded as follows.

 The local EV A is created.

 The first SET statement assigns the value „1‟ to it.

 The first DB statement thus declares a byte constant „1‟.

 The second SET statement assigns the value „2‟ to A

 And the second DB statement declares a constant „2‟.

3. ATTRIBUTES OF FORMAL PARAMETERS

 An attribute is written using the syntax

<attribute name>‟ <formal parameter spec>

 And represents information about the value

of the formal parameter,

 i.e. about the corresponding actual parameter.

 The type, length and size attributes have the

names T,L and S

EXAMPLE

 Here expansion time control is transferred to
the statement having .NEXT in its label field
only if the actual parameter corresponding to
the formal parameter A has the length of „1‟.

MACRO

DCL_CONST &A

AIF (L‟&A EQ 1) .NEXT

.NEXT----

MEND

CONDITIONAL EXPANSION

 While writing a general purpose macro it is

important to ensure execution efficiency of its

generated code.

 This is achieved by ensuring that a model

statement is visited only under specific

conditions during the expansion of a macro.

 How to do that?

 Ans: The AIF and AGO statements are used for

this purpose.

 Let us take example which would clear our

doubts for the same.

EXAMPLE: A-B+C

ONLY ANOP

OVER ANOP

MACRO

EVAL &X, &Y, &Z

AIF (&Y EQ &X) .ONLY

MOVER AREG, &X

SUB AREG, &Y

ADD AREG, &Z

AGO .OVER

.ONLY MOVER AREG, &Z

.OVER MEND

 It is required to develop a macro EVAL such that a

call EVAL A,B,C generates efficient code to evaluate

A-B+C in AREG.

 When the first two parameters of a call are identical,

EVAL should generate single MOVER instruction to

load 3rd parameter into AREG.

 As formal parameter is corresponding to actual

parameter, AIF statement effectively compares names

of first two actual parameters.

 If condition is true, expansion time control is

transferred to model statement MOVER AREG, &Z.

 If false, MOVE-SUB-ADD sequence is generated and

expansion time control is transferred to statement

.OVER MEND which terminates expansion.

 Thus, efficient code is generated under all conditions.

EXPANSION TIME LOOPS

 It is often necessary to generate many similar statements
during the expansion of a macro.

 This can be achieved by writing similar model statements
in the macro:

 Example

 MACRO

 CLEAR &A

 MOVER AREG, =‟0‟

 MOVEM AREG, &A

 MOVEM AREG, &A+1

 MOVEM AREG, &A+2

 MEND

 When called as CLEAR B, The MOVER statement puts
the value „0‟ in AREG, while the three MOVEM
statements store this value in 3 consecutive bytes with the
addresses B, B+1 and B+2.

 Alternatively, the same effect can be achieved by writing
an expansion time loop which visits a model statement, or a
set of model statement repeatedly during macro expansion.

 Expansion time loops can be written using expansion time
variables (EV‟s) and expansion time control transfer
statements AIF and AGO.

 Consider expansion of the macro call

CLEAR B, 3

 Example

MACRO

CLEAR &X, &N

LCL &M

&M SET 0

MOVER AREG, =‟0‟

.MORE MOVEM AREG, &X + &M

&M SET &M+1

AIF (&M NE &N) .MORE

MEND

OTHER FACILITIES FOR EXPANSION TIME

LOOPS

 The assembler for M 68000 and Intel 8088 processors provide explicit
expansion time looping constructs.

 <expression> should evaluate to a numerical value during macro
expansion.

 The REPT statement

REPT <expression>

 Statements between REPT and an ENDM statement would be
processed for expansion <expression> number of times.

 Following example use REPT to declare 10 constant with the value
1,2,…10.

 MACRO

 CONST10

 LCL &M

 &M SET 1

 REPT 10

 DC „&M‟

 &M SET &M+1

 ENDM

 MEND

THE IRP STATEMENT

 IRP <formal parameter> <argument list>

 The formal parameter mentioned in the statement takes
successive values from the argument list.

 For each value, the statements between the IRP and
ENDM statements are expanded once.

 MACRO

 CONSTS &M, &N, &Z

 IRP &Z, &M, 7, &N

 DC „&Z‟

 ENDM

 MEND

 A macro call CONSTS 4, 10 leads to declaration of 3
constants with the value 4, 7 and 10.

SEMANTIC EXPANSION

 Semantic expansion is the generation of instructions
to the requirements of a specific usage.

 It can be achieved by a combination of advanced
macro facilities like AIF, AGO statements and
expansion time variables.

 The CLEAR example is an instance of semantic
expansion. In this example the number of
MOVEM AREG,….. statement generated by a call on
CLEAR is determined by the value of the second
parameter of CLEAR.

 Following example is another instance of conditional
expansion wherein one of two alternative code
sequences is generated depending on actual
parameters of a macro call.

EXAMPLE

 This macro creates a constant „25‟ with the name
given by the 2nd parameter.

 The type of the constant matches the type of the
first parameter.

 MACRO

 CREATE_CONST &X, &Y

 AIF (T‟&X EQ B) .BYTE

 &Y DW 25

 AGO .OVER

 .BYTE ANOP

 &Y DB 25

 .OVER MEND

DESIGN OF A MACRO PREPROCESSOR

 The macro preprocessor accepts an assembly

program containing definitions and calls and

translates it into an assembly program which

does not contain any macro definitions and calls.

 The program form output by the macro

preprocessor can be handed over to an assembler

to obtain the target program.

Programs

with macro

definitions

and calls

Macro

Preprocessor
Assembler

Target

Program

Programs

Without

Macros

DESIGN OVERVIEW

 We begin the design by listing all tasks involved in
macro expansion.

 1. Identify macro calls in the program.

 2. Determine the values of formal parameters.

 3. Maintain the values of expansion time variables
declared in a macro.

 4. Organize expansion time control flow.

 5. Determine the values of sequencing symbols.

 6. Perform expansion of a model statement.

 Following 4 step procedure is followed to arrive at a
design specification for each task.

 Identify the information necessary to perform a task.

 Design a suitable data structure to record the information.

 Determine the processing necessary to obtain the
information.

 Determine the processing necessary to perform the task.

1. IDENTIFY MACRO CALLS

 A table called the Macro Name Table (MNT) is

designed to hold the names of all macros defined

in a program.

 A macro name is entered in this table when

macro definition is processed.

 While processing a statement in the source

program, the preprocessor compares the string

found in its mnemonic field with the macro

names in MNT.

 A match indicate that the current statement is a

macro call.

2. DETERMINE THE VALUES OF FORMAL

PARAMETERS

 A table called the Actual Parameter Table (APT) is
designed to hold the values of formal parameters
during the expansion of a macro call.

 Each entry in the table is a pair (<formal parameter
name>, <value>).

 Two items of information are needed to construct this
table, names of formal parameters and default values
of keyword parameters.

 A table called the Parameter Default Table (PDT) is
used for each macro.

 It would contain pairs of the form

(<formal parameter name>, <default value>)

 If a macro call statement does not specify a value for
some parameter par, its default value would be copied
from PDT to APT.

3. MAINTAIN EXPANSION TIME VARIABLES

 An Expansion time Variable Table (EVT) is

maintained for this purpose.

 The table contains pairs of the form

(<EV name>, <value>).

 The value field of a pair is accessed when a

preprocessor statement or a model statement

under expansion refers to an EV.

4. ORGANIZE EXPANSION TIME CONTROL

FLOW

 The body of a macro, i.e. the set of preprocessor

statements and model statements in it, is stored

in a table called the Macro Definition Table

(MDT) for use during macro expansion.

 The flow of control during macro expansion

determines when a model statement is to be

visited for expansion.

 For this purpose MEC (Macro Expansion

Counter) is initialized to the first statement of

the macro body in the MDT.

 It is updated after expanding a model statement

of on processing a macro preprocessor statement.

5. DETERMINE VALUES OF SEQUENCING

SYMBOLS

 A Sequencing Symbols Table (SST) is

maintained to hold this information.

 The table contains pairs of the form

(<sequencing symbol name>, <MDT entry #>)

 Where <MDT entry #> is the number of the

MDT entry which contains the model statement

defining the sequencing symbol.

 This entry is made on encountering a statement

which contains the sequencing symbol in its label

field (for back reference to symbol) or on

encountering a reference prior to its

definition(forward reference).

6. PERFORM EXPANSION OF A MODEL

STATEMENT

 This is trivial task given the following:

 1. MEC points to the MDT entry containing the

model statement.

 2. Values of formal parameters and EV‟s are

available in APT and EVT, respectively.

 3. The model statement defining a sequencing symbol

can be identified from SST.

 Expansion of a model statement is achieved by

performing a lexical substitution for the

parameters and EV‟s used in the model

statement.

DATA STRUCTURE

 The tables APT, PDT and EVT contain pairs which are
searched using the first component of the pair as a key.

 For example the formal parameter name is used as the key
to obtain its value from APT.

 This search can be eliminated if the position of an entity
within the table is known when its value is to be accessed.

 In context of APT, the value of a formal parameter ABC is
needed while expanding a model statement using it.

 MOVER AREG, &ABC

 Let the pair (ABC, ALPHA) occupy entry #5 in APT.
The search in APT can be avoided if the model
statement appears as MOVER AREG, (P,5) in the MDT,
where (P,5) stands for the words “parameter #5”.

 Thus macro expansion can be made more efficient by
storing an intermediate code for a statement in the MDT.

 All the parameter names could be replace by
pairs of the form (P,n) in model statements
and preprocessor statements stored in MDT.

 The information (P,5) appearing in a model
statement is sufficient to access the value of
formal parameter ABC. Hence APT containing
(<formal parameter name> , <value>) is
replace by another table called APTAB which
only contains <value>‟s.

 To implement this, ordinal numbers are assigned
to all parameters of a macro.

 A table named Parameter Name Table
(PNTAB) is used for this purpose. PNTAB is
used while processing the definition of a macro.

 Parameter names are entered in PNTAB in
the same order in which they appear in the
prototype statement.

 Its entry number is used to replace the
parameter name in the model and preprocessor
statements of the macro while storing it in the
MDT.

 This implements the requirement that the
statement MOVER AREG, &ABC should appear
as MOVER

AREG, (P,5) in MDT.

 In effect, the information (<formal parameter
name>,<value>) in APT has been split into two
table

 PNTAB which contains formal parameter names.

 APTAB which contains formal parameter values.

 PNTAB is used while processing a macro
definition while APTAB is used during macro
expansion.

 Similar Analysis leads to splitting

 EVT into EVNTAB and EVTAB.

 SST into SSNTAB and SSTAB.

 EV names are entered into EVNTAB while processing EV
declaration statements.

 SS names are entered in SSNTAB while processing an SS
reference or definition, whichever occurs earlier.

 Entries only need to exist for default parameter,
therefore we replace the parameter default table (PDT)
by a keyword parameter default table (KPDTAB).

 We store the number of positional parameters of macro in a
new field of the MNT entry.

 MNT has entries for all macros defined in a program.

 Each MNT entry contains three pointers MDTP, KPDTP
and SSTP, which are pointers to MDT, KPDTAB and
SSNTAB.

 Instead of creating different MDT‟s for different macros, we
can create a single MDT and use different sections of this
table for different macros.

TABLES ARE CONSTRUCTED FOR MACRO

PREPROCESSOR.

Table Fields

MNT (Macro Name Table) Macro Name

Number of Positional Parameter

(#PP)

Number of keyword parameter

(#KP)

Number of Expansion Time

Variable (#EV)

MDT pointer (MDTP)

KPDTAB pointer (KPDTABP)

SSTAB pointer (SSTP)

(CONTI…..) TABLES ARE CONSTRUCTED

FOR MACRO PREPROCESSOR.

Tables Fields

PNTAB (Parameter Name Table) Parameter name

EVNTAB (EV Name Table) EV Name

SSNTAB (SS Name Table) SS Name

KPDTAB (Keyword Parameter

Default Table)

Parameter name, default value

MDT (Macro Definition Table) Label, Opcode, Operands Value

APTAB (Actual Parameter

Table)

Value

EVTAB (EV Table) Value

SSTAB (SS Table) MDT entry #

CONSTRUCTION AND USE OF THE MACRO

PREPROCESSOR DATA STRUCTURES CAN BE

SUMMARIZED AS FOLLOWS.

 PNTAB and KPDTAB are constructed by processing
the prototype statement.

 Entries are added to EVNTAB and SSNTAB as
EV declarations and SS definitions/references are
encountered.

 MDT are constructed while processing the model
statements and preprocessor statements in the
macro body.

 An entry is added to SSTAB when the definition of a
sequencing symbol is encountered.

 APTAB is constructed while processing a macro call.

 EVTAB is constructed at the start of expansion of a
macro.

 See Pg.151, Fig 5.8.

PROCESSING OF MACRO DEFINITIONS

 The following initializations are performed before

initiating the processing of macro definitions in a

program

 KPDTAB_pointer:=1;

 SSTAB_ptr:=1;

 MDT_ptr:=1;

 Now let us see the algorithm which is invoked for

every macro definition.

ALGORITHM (PROCESSING OF A MACRO

DEFINITION)

1. SSNTAB_ptr:=1;

PNTAB_ptr:=1;

2. Process the macro prototype statement and form the MNT entry.

a. Name:=macro name;

b. For each positional parameter

i. Enter parameter name in PNTAB[PNTAB_ptr].

ii. PNTAB_ptr:=PNTAB_ptr + 1;

iii. #PP:=#PP+1;

c. KPDTP:=KPDTAB_ptr;

d. For each keyword parameter

i. Enter parameter name and default value (if any) in
KPDTAB[KPDTAB_ptr].

ii. Enter parameter name in PNTAB[PNTAB_ptr].

iii. KPDTAB_ptr:=KPDTAB_ptr+1;

iv. PNTAB_ptr:=PNTAB_ptr+1;

v. #KP:=#KP+1;

e. MDTP:=MDT_ptr;

f. #EV:=0;

g. SSTP:=SSTAB_ptr;

3. While not a MEND statement

a. If an LCL statement then

i. Enter expansion time variable name in EVNTAB.

ii. #EV:=#EV + 1;

b. If a model statement then

i. If label field contains a sequencing symbol then

If symbol is present in SSNTAB then

q:=entry number in SSNTAB;

else

Enter symbol in SSNTAB[SSNTAB_ptr].

q:=SSNTAB_ptr;

SSNTAB_ptr:=SSNTAB_ptr + 1;

SSTAB[SSTP + q -1] := MDT_ptr;

ii. For a parameter, generate the specification (P,#n)

iii. For an expansion variable, generate the specification

(E,#m).

iv. Record the IC in MDT[MDT_ptr];

v. MDT_ptr:=MDT_ptr + 1;

c. If a preprocessor statement then

i. If a SET statement

Search each expansion time variable name used

in the statement in EVNTAB and

generate the spec (E,#m).

ii. If an AIF or AGO statement then

If sequencing symbol used in the statement is present

in SSNTAB

Then

q:=entry number in SSNTAB;

else

Enter symbol in SSNTAB[SSNTAB_ptr].

q:=SSNTAB_ptr;

SSNTAB_ptr:=SSNTAB_ptr+1;

Replace the symbol by (S,SSTP + q -1).

iii. Record the IC in MDT[MDT_ptr]

iv. MDT_ptr:=MDT_ptr+1;

4. (MEND statement)

If SSNTAB_ptr=1 (i.e. SSNTAB is empty)

then

SSTP:=0;

Else

SSTAB_ptr:=SSTAB_ptr+SSNTAB_ptr-1;

If #KP=0 then KPDTP=0;

MACRO EXPANSION

 We use the following data structure to perform macro
expansion
 APTAB Actual Parameter Table

 EVTAB EV Table

 MEC Macro expansion counter

 APTAB_ptr APTAB pointer

 EVTAB_ptr EVTAB pointer

 The number of entry in APTAB equals the sum of values in
the #PP and #KP fields of the MNT entry of

 macro.

 Number of entries in EVTAB is given by the value in #EV field
of the MNT.

 APTAB and EVTAB are constructed when a macro call is
recognized.

 APTAB_ptr and EVTAB_ptr are set to point at these tables.

 MEC always pointers to the next statement to be expanded.

 For data structure, pl see Fig. 5.9 which explains Data
Structure.

ALGORITHM (MACRO EXPANSION)

1. Perform initializations for the expansion of a macro.

a. MEC:=MDTP field of the MNT entry.

b. Create EVTAB with #EV entries and set EVTAB_ptr.

c. Create APTAB with #PP+#KP entries and set

APTAB_ptr.

d. Copy keyword parameter defaults from the entries
KPDTAB[KPDTP]….KPDTAB[KPDTP+#KP-1] into

APTAB[#PP+1]…..APTAB[#PP+#KP].

e. Process positional parameters in the actual parameter

list and copy them into APTAB[1]….APTAB[#PP].

f. For keyword parameters in the actual parameter list

Search the keyword name in parameter name field of

KPDTAB[KPDTP]…KPDTAB[KPDTP+#KP-1].

Let KPDTAB[q] contain a matching entry.

Enter value of the keyword parameter in the call (if any)

in APTAB[#PP+q-KPDTP+1].

2. While statement pointed by MEC is not MEND statement

a. If a model statement then

i. Replace operands of the form (P,#n) and

(E,#m) by values in APTAB[n] and

EVTAB[m] respectively.

ii. Output the generated statement.

iii. MEC:=MEC+1;

b. If a SET statement with the specification (E,#m) in

the label field then

i. Evaluate the expression in the operand field and

set an appropriate value in EVTAB[m].

ii. MEC:=MEC+1;

c. If an AGO statement with (S,#s) in operand field then

MEC:=SSTAB[SSTP+s-1];

d. If an AIF statement with (S,#s) in operand field then

If condition in the AIF statement is true then

MEC:=SSTAB[SSTP+s-1];

3. Exit from the macro expansion.

 See Fig 5.9 on page 154 explaining DS for Macro Expansion.

NESTED MACRO CALLS

 Macro calls appearing in the source program have
been expanded but statements resulting from the
expansion may themselves contain macro calls.

 The macro expansion can be applied until we get the
code form which does not contain any macro call
statement.

 Such expansion requires a number of passes of macro
expansion.

 To increase the efficiency, another alternative would
be to examine each statement generated during
macro expansion to see if it is itself a macro call.

 If so, provision can be made to expand this call
before continuing with the expansion of the parent
macro call.

 This avoids multiple passes of macro expansion.

CONSIDER THE SITUATION

 Consider COMPUTE macro gives raise to the

INCR_D macro calling statement which requires

expansion of the INCR_D macro calling

statement.

 These model statements will be expanded using

the expansion time data structure MEC,

APTAB, EVTAB, APTAB_ptr and EVTAB_ptr

for inner macro and for outer macro these data

structure should be restored with its original

value.

REQUIRED PROVISION

 Thus two provisions are required to implement
the expansion of nested macro calls.

 1. Each macro under expansion must have its
own set of data structure viz. MEC, APTAB,
EVTAB, APTAB_ptr and EVTAB_ptr.

 2. An expansion nesting counter (Nest_cntr) is
maintained to count the number of nested macro
calls.

 Nest_cntr is incremented when macro call is
recognized and decremented when a MEND
statement is encountered.

 Thus Nest_cntr > 1 indicates that a nested
macro call is under expansion, while Nest_cntr=0
implies that macro expansion is not in progress
currently.

 The first provision can be implemented by creating many copies
of the expansion time data structure.

 These can be stored in the form of an array. For example, we
can have an array called APTAB_ARRAY, each element of
which is an APTAB. For the innermost macro call would
be given by APTAB_ARRAY[Nest_cntr].

 However it is expensive in terms of memory requirement.

 Since macro calls are expanded in a LIFO manner, a practical
solution is to use a stack to accommodate the expansion time
data structure.

 The stack consists of expansion records, each expansion record
accommodating one set of expansion time data structure.

 The expansion record at the top of the stack corresponds to the
macro call currently being expanded.

 When a nested macro call is recognized, a new expansion
record is pushed on the stack to hold the data structure for
the call.

 At MEND, an expansion record is popped off the stack.

 Use of stack for macro preprocessor data structure.

DATA STRUCTURE FOR NESTED MACRO

Previous

Expansion

Record

RB Reserved

Pointer

1(RB) MEC

2(RB) EVTAB_ptr

3(RB) APTAB

TOS->EVTAB

Data Structure Address

Reserved Pointer 0(RB)

MEC 1(RB)

EVTAB_ptr 2(RB)

APTAB 3(RB) to entry of

APTAB + 2(RB)

EVTAB Contents of

EVTAB_ptr

ACTIONS AT START AND END OF MACRO

EXPANSION

No. Statement

1. TOS := TOS + 1;

2. TOS* := RB;

3. RB := TOS;

4. 1(RB) := MDTP entry of MNT;

5. 2(RB) := RB + 3 + #e of APTAB;

6. TOS := TOS + #e of APTAB + #e of EVTAB + 2;

No. Statement

1. TOS := RB-1;

2. RB := RB*;

See example 5.17 on page 158

LAST TOPIC: DESIGN OF MACRO

ASSEMBLER

 We have already discussed from the book.

 Do it from the book.

 Pg 158 to pg 160.

 And we end the chapter here.

 Thank You.

