
Data Structure for Language
Processing

Bhargavi H. Goswami
Assistant Professor

Sunshine Group of Institutions

INTRODUCTION:

• Which operation is frequently used by a
Language Processor?

• Ans: Search.
• This makes the design of data structures a

crucial issue in language processing activities.
• In this chapter we shall discuss the data

structure requirements of LP and suggest
efficient data structure to meet there
requirements.

Criteria for Classification of Data
Structure of LP:

• 1. Nature of Data Structure: whether a
“linear” or “non linear”.

• 2. Purpose of Data Structure: whether a
“search” DS or an “allocation” DS.

• 3. Lifetime of a data structure: whether
used during language processing or during
target program execution.

Linear DS

• Linear data structure consist of a linear arrangement of
elements in the memory.

• Advantage: Facilitates Efficient Search.

• Dis-Advantage: Require a contagious area of memory.

• Do u consider it a problem? Yes or No?

• What the problem is?

• Size of a data structure is difficult to predict.

• So designer is forced to overestimate the memory
requirements of a linear DS to ensure that it does not outgrow
the allocated memory.

• Disadvantage: Wastage Of Memory.

Non Linear DS

• Overcomes the disadvantage of Linear DS.
HOW?

• Elements of Non Linear DS are accessed using
pointers.

• Hence the elements need not occupy
contiguous areas of memory.

• Disadvantage: Non Linear DS leads to lower
search efficiency.

Linear & Non-Linear DS

A
B

C

D

Linear

E

H

G

F

F

E

F

H

Non Linear

Search Data Structures

• Search DS are used during LP’ing to maintain
attribute information concerning different
entities in source program.

• Fact: The entry for any entity is created only
once but may be searched for large number of
times.

• Search efficiency is therefore very important.

Allocation Data Structures

• Fact: The address of memory area allocated to
an entity is known to the user(s) of that entity.

• Means, no search operations are conducted
on them.

• So what remains the important criteria for
allocation data structures?
– Speed of allocation and deallocation

– Efficiency of memory utilization

Use of Search and Allocation DS:

• LP uses both search DS and allocation DS
during its operation.

• Use of Search DS: To constitute various
tables of information.

• Use of Allocation DS: To handle programs
with nested structures of some kind.

• Target program rarely uses search DS.

e.g Consider Following Pascal Program:

Program Sample(input,output);

var

x,y : real;

i : integer;

Procedure calc(var a,b : real);

var

sum : real;

begin

sum := a+b;

end calc;

begin {Main Program}

end.

• The definition of procedure ‘calc’ is nested inside the
main program.

• Symbol tables need to be created for the main
program as well as for procedure ‘calc’.

• We call them Symtabsample and Symtabcalc.

• What DS these symbol tables are?

Search or Allocation?

• Ans: Search Data Structures. Y?

• During compilation, the attributes of a symbol are
obtained by searching appropriate symbol table.

• Now, memory needs to be allocated to
Symtabsample and Symtabcalc

• How would we do it?

• Ans: Using an Allocation DS.

• The addresses of these tables are noted in a
suitable manner.

• Hence no searches are involved in locating
Symtabsample and Symtabcalc.

e.g Consider Following Pascal and C
segments:

• Pascal: var p : integer;

begin

new (p);

• C: float *ptr;

ptr = (float*)calloc(5,sizeof(float));

• The Pascal call new(p): allocates sufficient memory to
hold an integer value and puts the address of this
memory area in p.

• The C statement ptr=… : allocates a memory area
sufficient to hold 5 float values and puts its address
in ptr.

• Means, access to these memory area are
implemented through pointers. i.e p and ptr.

• Conclusion: No search is involved in accessing the
allocated memory.

SEARCH DATA STRUCTURES

Search Data Structures Topic List

• Entry Formats

• Fixed and variable length
entries

• Hybrid entry formats

• Operations on search
structures

• Generic Search
Procedures

• Table organizations

• Sequential Search Org

• Binary Search Org

• Hash table Org

• Hashing functions

• Collision handling
methods.

• Linked list

• Tree Structured Org

Search Data Structure:
• When we talk of ‘Search’ what is the basic requirement?

• Ans. ‘Key’. Key is the symbol field containing name of an
entity.

• Search Data Structure (also called search structure) is a set
of entries, each entry accommodating the information
concerning one entity.

• Each entry in search structure is a set of fields i.e a record, a
row.

• Each entry is divided into two parts:

– Fixed Part

– Variant Part

• The value in fixed (tag) part determines the information to
be stored in the variant part of the entry.

Entries in the symbol table of a
compiler have following field:

--
Tag Value Variant Part Fields
--
Variable type, length, dimension info
Procedure address of parameter list,

number of parameters
Function type of returned value, length

of returned value, address of
address of parameter list,
number of parameters

Label statement number

Fixed Length Entry:

1. Symbol

2. Class

3. Type

4. Length

5. Dimension
Information

6. Parameter List
Address

1 2 3 4 5 6 7 8 9 10

7. No. of
Parameters

8. Type of returned
value

9. Length of
returned value

10.Statement
number.

Variable Length Entry:

• 1. Name
• 2. Class
• 3. Statement Number
• When class = label, all fields excepting name, class and statement

number are redundant.
• Here, Search method may require knowledge of length of entry.
• So the record would contain following fields:

– 1. A length field
– 2. Fields in fixed part including tag field
– 3. { fj | fj Є SFVj if tag = Vj }

1 2 3

length entry

Fixed v/s Variable
• For each value Vi in the tag field, the variant part of the entry

consists of the set of fields SFVi.
• Fixed Length Entry Format:

– 1. Fields in the fixed part of the entry.
– 2. Uvi SFvi, i.e the set of fields in all variant parts of the entry.

• In fixed length entries, all the records in search structure have an
identical format.

• This enables the use of homogeneous linear data structures like
arrays.

• Drawback?
• Inefficient use of memory. How?
• Many records may contain redundant fields.
• Solution?
• Variable Length Entry Format:

– Fields in the fixed part of entry, including the tag field
– { fj | fj Є SFVj if tag = Vj }

• This entry format leads to compact organization in which no
memory wastage occurs.

Hybrid Entry Formats:

• Compromise between Fixed and Variable entry formats.

• Why this is needed?

• To combine access efficiency of Fixed Entry Format with memory
efficiency of Variable Entry Format.

• What is done here?

• Each entry is divided into two halves

i.e Fixed Part and Variable Part

• Data Structure:

– Fixed Part : Search DS/ Linear DS. Y? Require Efficient Searching.

– Variable Part : Allocation DS/ Linear / Non Linear DS. Y? Fixed part has
pointer field which do not need searching in variable part.

Fixed Part Pointer length Variable Part

Search DS Allocation DS

Operations on Search Structures:

• 1. Operation add: Add the entry of a symbol.
Entry of symbol is created only once.

• 2. Operation search: Search and locate the
entry of a symbol. Searching may be
performed for more than once.

• 3. Operation delete: Delete the entry of a
symbol. Uncommon operation.

Algorithm: Generic Search
Procedure:

• 1. Make a prediction concerning the entry of search data
structure which symbol s may be occupying. We call this entry
e.

• 2. Let se be the symbol occupying eth entry. Compare s with se.
Exit with success if the two match.

• 3. Repeat step 1 and 2 till it can be concluded that the symbol
does not exist in the search data structure.

--
• Each comparison of step 2 is called a probe.
• How to determine the efficiency of search procedure?
• Ans: No. of probes performed by search procedure.
• Probe Notations:

– Ps : Number of probes in successful search
– Pu : Number of probes in an unsuccessful search.

Table Organization:
• Entries of table occupy adjoining areas of memory. Adjoining

areas here means ‘previous entry’ and ‘next entry’.
• Positional Determinacy: Tables using fixed length entry

organization possess this property. This property states that
the address of an entry in a table can be determined from its
entry number.

• Eg: Address of the eth entry is
a + (e – 1). L

a : address of first entry.
L : length of an entry.
e : entry number.

• Use of Positional Determinacy:
– Representation of symbols by e
– Entry number in the search structure
– Intermediate code generated by LP

#1

#2

#f

#n

Occupied EntriesOccupied Entries

Free Entries

A Typical State of a Table Using

Sequential Search Organization

n: Number of entries in the table

f: Number of occupied entries

Sequential Search Organization
• Search for a symbol: All active entries in the table have the same

probability of being accessed.
• Ps = f/2 for a successful search
• Pu = f for an unsuccessful search
• Following an unsuccessful search, a symbol may be entered in the table

using an add operation.
• Add a symbol: The symbol is added to the first free entry in the table. The

value of f is updated accordingly.
• Delete a symbol: Two ways:

– Physical Deletion: an entry is deleted by erasing or by overwriting. If the dth
entry is to be deleted, entries d+1 to f can be shifted ‘up’ by one entry each.
This would require (f-d) shift operations in symbol table. Efficient alternate
would be to move fth entry into dth position, requiring only one shift
operation.

– Logical Deletion: is performed by adding some information to the entry to
indicate its deletion. How to implement it? By introducing a field to indicate
whether an entry is active or deleted.

Active/ Deleted Symbol Other Info

Binary Search Organization

• All entries in a table are assumed to satisfy an ordering relation.

• ‘<‘ relation implies that the symbol occupying an entry is ‘smaller
than’ the symbol occupying the next entry.

Algorithm 2.2 (Binary Search)

• 1. start:=1; end:=f;

• 2. while start <= end

– (a) e:= [(start+end)/2]; where [] implies a rounded quotient. Exit
with success if s=se.

– (b) if s<se then end:=e-1; else start:=e+1;

• 3. Exit with failure.

• For a table containing f entries we have ps <= [log2f] and pu=[log2f].

• What is the problem with this search organization?

• Ans: The requirement that the entry number
of a symbol in the table should not change
after an add operation. Y?

• Because its used in IC.

• Thus, this forbids both, addition and deletion
during language processing.

• Hence, binary search organization is suitable
only for a table containing a fixed set of
symbols.

Hash Table Organization:
• There are three possibilities exist concerning the

predicted entry
– Entry may be occupied by s
– Entry may be occupied by some other symbol
– Entry may be empty.

• Which of the above possibility is called a
collision?

• Ans: second case, i.e s != se

• Algorithm 2.3 (Hash Table Management)
– 1. e:=h(s);
– Exit with success if s = se and with failure if entry e is

unoccupied.
– Repeat steps 1 and 2 with different functions h’,

h’’,etc.

• n : number of entries in the table

• f : number of occupied entries in the table

• P : Occupation density in table, i.e f/n

• k : number of distinct symbols in source
language

• kp: number of symbols used in some source
program

• Sp: set of symbols used in some source
program

• N : Address space of the table.

• K : Key space of the system

• Kp: Key space of a program

• Hashing function has the property:
1 <= h(symb) <= n

• Direct Entry Organization:
– If k<=n we can select ‘one to one’ function as hashing

function h.
– This will eliminate collision.
– Will require large symbol table.
– Better solution Kp => N which is nearly one to one for

set of symbols Sp.

• Effectiveness of a hashing organization depends
on average value of ps.

• If kp increases, ps should also increase.
• Assignment Question: What is folding?
• Assignment Question: Write a Short Note on

Hashing function.

Collision Handling Methods
• 1. Rehashing Technique: To accommodate a colliding

entry elsewhere in the hash table. Disadvantage:
Clustering. Solution?

• 2. Overflow Chaining Technique: To accommodate the
colliding entry in a separate table. Disadvantage: Extra
memory requirement by overflow table. Solution?

• 3. Scatter Table Organization: Overcomes drawback of
overflow chaining technique, i.e large memory
requirement.

• Assi. Ques: Write a note on following:
– 1. Rehashing giving suitable example (hint eg.2.6)
– 2. Overflow Chaining with example(hint eg.2.7)
– 3. Scatter Table Organization with example.
– 4. Compare collision resolution techniques based on

memory requirement. Also give conclusion.

Linked List & Tree Structure
Organizations

• Each entry in linked list organization
contains a single pointer field.

• List has to be searched sequentially.

• Hence its performance is identical with
that of sequential search tables. i.e ps= l/2
and pu = l.

Symbol Other Info Pointer

Binary Trees
• Each node in the tree is a symbol entry with two pointer fields

i.e Left Pointer and Right Pointer.
• Algorithm 2.4 (Binary Tree Search)
• 1. current_node_pointer := address of root
• 2. if s = (current_node_pointer)*.symbol then exit with success;
• 3. if s<(current_node_pointer)*.symbol then

current_node_pointer:= (current_node_pointer) *. left_pointer;
else current_node_pointer:= (current_node_pointer) *. right_pointer;

• 4. if current_node_pointer := nill then
exit with failure.

else goto step 2.
• When can we obtain best search performance?
• Ans: when the tree is balanced.
• When the search performance is worst?
• Ans: when tree degenerates to linked list and performance becomes similar to

sequential search.

Example: p,c,t,f,h,k,e.

p

c t

f

h

k

e

After Rebalancing:

c, e, f, h, k, p, t

h

e p

c f k t

Nested Search Structures:

• Nested search structures are used when it is
necessary to support a search along a
secondary dimension within a search
structure.

• Also called multi-list structures.

• Each symbol table entry contains two fields:

– Field list

– Next field

Eg: personal_info :

record

name : array[1..10] of char;

gender : char;

id: int;

end;

personal info

name

gender

id

-

-

-

-

Name Field List Next Field

ALLOCATION DATA STRUCTURES
- Stacks
- Heaps

Stacks
• Is a linear data structure which satisfies following

properties:
– 1. Allocation and de-allocation are performed in a LIFO manner.
– 2. Only last element is accessible at any time.

• SB – Stack Base points to first word of stack.
• TOS – Top Of Stack points to last entry allocated to stack.
• In last fig u can see that TOS = SB – 1.

10

20

30

40

50

SB

TOS

10

20

30

40

50

SB

TOS

10

20

30

40

SB

TOS

60

SB

TOS

Extended Stack Model
• All entries may not be of same size.
• Record: A set of consecutive stack entries.
• Two new pointers exist in the model other than SB and TOS.
• 1. RB Record Base pointing to the first word of the last record

in stack.
• 2. ‘Reserve Pointer’, the first word of each record.
• The allocation and de-allocation time actions shown below:

SB

RB

TOS RB

TOS

SB SB,RB

TOS

Allocation
• 1. TOS := TOS + 1;
• 2. TOS* := RB;
• 3. RB := TOS;
• 4. TOS := TOS + n;
• The first statement increments TOS by one stack entry.
• Now TOS points to ‘reserved pointer’ of new record.
• 2nd statement deposits address of previous record base into

‘reserved pointer’.
• 3rd statement sets RB to point at first stack entry in the new

record.
• 4th statement performs allocation of n stack entries to the new

entity. See fig 2 in previous slide.
• The newly created entity now occupies the address <RB> + l to

<RB> + l x n.
• RB stands for contents of Record in ‘RB’.

De-Allocation

• 1. TOS := RB – 1;
• 2. RB := RB*;
• 1st statement pops a record off the stack by

resetting TOS to the value it had before the
record was allocated.

• 2nd statement points RB to base of the previous
record.

• That was all about allocation and de-allocation in
extended stack model.

• Now let us see an implementation of this model
in a Pascal program that contains nested
procedures where many symbol table must co-
exist during compilation.

Example: Consider Pascal Program

Program Sample(input,output);
var

x,y : real;
i : integer;

Procedure calc(var a,b : real);
var

sum : real;
begin

sum := a+b;

end calc;

begin {Main Program}

end.

-

sample

x

y

i

calc

a

b

sumTOS

RB

SB

Heaps

• Non Linear Data Structure
• Permits allocation and de-allocation of entities in

random order.
• Heaps DS does not provide any specific means to

access an allocated entity.
• Hence, allocation request returns pointer to allocated

area in heap.
• Similarly, de-allocation request must present a pointer

to area to be de-allocated.
• So, it is assumed that each user of an allocated entity

maintains a pointer to the memory area allocated to
the entity.

• Lets take the example to clarify more what we talked.

Example: Status of Heap after c program
execution

float *floatptr1,*floatptr2;

Int *intprt;

floatptr1=(float *)calloc(5,sizeof(float));

floatptr2=(float *)calloc(5,sizeof(float));

intptr=(int *)calloc(5,sizeof(int));

free(floatptr2);

--

floatptr1

floatptr2

intprt

• This creates a ‘hole’ in the allocation.

Memory Management

• We have seen how ‘holes’ are developed in
memory due to allocation and de-allocation in
the heap.

• This creates requirement of memory
management that identifies free memory
areas and reusing them while making fresh
allocation.

• Performance criteria for memory
management would be
– Speed of allocation / de-allocation

– Efficiency of memory utilization

Identifying Free Memory
Areas

• Two popular techniques used to identify
free memory areas are:

– 1. Reference Counts

– 2. Garbage Collection

Reference Counts

• In this technique system associates a “reference
count” with each memory area to indicate the
number of its active users.

• The number is incremented when new user gains
access to that area.

• And the number is decremented when user
finishes using it.

• The area is knows to be free when its “reference
count” drops to zero.

• Advantage: Simple to implement.
• Disadvantage: Incurs Overheads at every allocation

and de-allocation.

Garbage Collection

• Garbage collection makes two passes over
memory to identify unused areas.

• 1st Pass: It traverses all pointers pointing to
allocated areas and marks the memory areas
which are in use.

• 2nd Pass: Finds all unmarked areas and declare
them to be free.

• Advantage: Doesn’t incur incremental
overhead.

• Disadvantage: Incurred only when system
runs out of free memory to allocate to fresh
request, resulting to delayed performance.

Memory Compaction:
• To manage the reuse of free memory, perform memory compaction to

combine these ‘free list’ areas into single ‘free area’.

• Green box indicates allocated area and Maroon box indicates de-allocated
area which later gets converted to n free lists in second fig and at last
compacting memory to single free list.

• First word of this area contains a count of words in area and second is next
pointer which may be NULL.

a

x

b

c

y

d

z

e

a

b

c

d

e

--

a

b

c

d

e
--

Reuse of Memory:

• After memory compaction, fresh allocation
can be made on free block of memory.

• Free area descriptor and count of words in
free area are updated.

• When a free list is used, two techniques
can be used to perform a fresh allocation:

– 1. First Fit Technique

– 2. Best Fit Technique

Techniques to make fresh allocation:

First Fit

• First fit technique selects
first free area whose size
is greater than or equal to
n(number of words to be
alloacated) words.

• Problem: Memory area
becomes successively
smaller.

• Result: Request for large
memory area may have to
be rejected.

Best Fit

• Best fit technique finds
the smallest free area
whose size is greater than
or equal to n.

• Advantage: This enables
more allocation request
to be satisfied.

• Problem: In long run, it
too may suffer from
problem of numerous
small free areas.

Chapter Ends Here

• Assignment Question:

